Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The hundreds of tidewater glaciers found in the Canadian Arctic Archipelago have the potential to enhance delivery of nutrients and other material to the surface ocean. Despite this, their influence on marine ecosystems, specifically phytoplankton, is poorly characterized. Here we developed and applied a quantitative mass spectrometry‐based approach to measure phytoplankton ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) concentrations to examine differences in productivity in glacierized and non‐glacierized marine systems in Jones Sound, Nunavut, within Inuit Nunangat. Comparisons to chloroplast 16S rRNA gene amplicon sequencing data suggested that these measurements detect the majority of Rubisco produced in Jones Sound. Because Rubisco catalyzes carbon fixation, we used these measurements to estimate total and group‐specific primary production potential, which were within the range of historical primary production measurements made using classical methods in this region. Our measurements also revealed that up to 2% of total protein in the water column is Rubisco, and that Rubisco concentrations are correlated with chlorophyll fluorescence, with maxima near the nitracline. Rubisco produced by diatom generaChaetocerosandThalassiosirawere higher in marine regions influenced by glaciers, while Rubisco fromMicromonas(Chlorophyta) was greater in non‐glacierized regions. This suggests that future climate scenarios may favor smaller phytoplankton groups, likeMicromonas, with consequences for food webs and carbon cycling. This study broadens our understanding of how tidewater glaciers will impact phytoplankton communities, now and in a warmer future, and lays the foundation for using this mass spectrometry‐based approach to quantify phytoplankton group‐specific carbon fixation potential in other marine regions.more » « less
-
Abstract Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.more » « less
An official website of the United States government
